A
12 = . ' B}!Q i ; A .
§ECU2FI’S CltﬁsseF:‘..rIAEanu AE TRIC OACE b (J()PY

It roved
ATION PAGE e

1a. REPORT th. RESTRICT!VE MARKINGS
ma.  AD-A225 989

2a. SECURIT 3. DISTRIBUTION / AVAILABILITY OF REPORT

Approved for Public Release;

2b. DECLASSIFICATION / DOWNGRA EDULE . . . ..
NfA Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NU sesT(Di 5. MONITORING ORGANIZATION REPORT NUMBER(S)
Technical Report No. 290 [°]) AFOSRTR- 90 O 846

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL [ 7a. NAME OF MONITORING ORGANIZATION

University of North Carolina (If applicable)
Center for Stochastic Processe: AFOSR/NM

6c. ADDRESS (City, State, and ZiP Code) 7b. ADDRESS (City, State, and ZIP Code)
Statistics Department Bldg. 410
CB #3260, Phillips Hall Bolling Air Force Base, DC 20332-6448
Chapel Hill, NC 27599-3260

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL ] 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
AFOSR NM F49620 85C 0144

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Bldg. 410 Mmoo e [esson

: . Ino. N ACCESSION NO

Bolling AFB, DC 20332-6448 6.1102F 2304 }\_’)

11. TITLE (Include Security Classification)
HOlder continuity of sample paths of some self-similar stable processes

12. PERSONAL AUTHOR(S)
ono, N. and Maejima, M.

13a. TYPE OFf REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) ]15. PAGE COUNT
preprint FROM TO 1990, March 14

16. SUPPLEMENTARY NOTATION
None,

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIiELD GROQUP SUB-GROUP N/A

XOOCOOBCNOAX XX XK XX

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

i

The H@ider continuity of sample paths of the following classes of
stochastic processes is examined: (1) Processes satisfying Kolmogorov's moment

condition, (2) self-similar stable processes with stationary increments and (3)

harmonizable fractional stable processes.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
G uncrassirieorunumiteo O] same as Ret O oric users | UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢c. OFFICE SYMBOL
Professor EytamBarouch Jod . S, oqaex | (202)767-5026 AFOSR/NM
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION QF THIS PAGE

UNCLASSIFED




CENTER FOR STOCHASTIC PROCESSES

Department of Statistics
University of North Carolina
Chapel Hill, North Carolina

HOLDER CONTINUITY OF SAMPLE PATHS OF SOME SELF-SIMILAR STABLE PROC SSES
by
Norio Kono
and

Makoto Maejima

Technical Report No. 299
March 1990




HOLDER CONTINUITY OF SAMPLE PATHS OF SOME SELF-SIMILAR STABLE PROCESSES

by

Norio Kono
Institute of Mathematics
Yoshida College
Kyoto University
Kyoto 606, Japan

and

Makoto Maejima*
Department of Mathematics
Keio University
Hiyoshi, Yokohama 223, Japan
and
Center for Stochastic Processes
University of North Carolina
Chapel Hill, NC 27599-3260 USA

Abstract.

The Holder continuity of sample paths of the following classes of
stochastic processes is examined: (1) Processes satisfying Kolmogorov's moment
condition, (2) self-similar stable processes with stationary increments and (3)

harmonizable fractional stable processes.

*Research supported by the Air Force Office of Scientific Research Contract No.
F49620 85C 0144.




1. Introduction and results

A stochastic process is said to be H-self-similar (H-ss) for H>0 if for
any c>0, all finite-dimensional distributions of {X(ct)} are the same as those
of {cHX(t)}. and to have stationary increments (si) if any finite-dimensional
distribution of {X(t+b)-X(t)} does not depend on b. It is also said to be
a-stable if any finite-dimensional distribution of {X(t)} is a-stable.

In this paper, we examine the Holder continuity of H-ss si a-stable
processes.

There are two main classes of H-self-similar a-stable processes with
stationary increments: the linear fractional stable processes and the
harmonizable fractional stable processes. In [T], Takashima showed the Holder
continuity of the linear fractional stable processes, and also pointed out that
the exponent in the Holder continuity cannot be bigger than H-1/a. However, we
can get a better Holder continuity for the harmonizable fractional stable
processes as follows. The harmonizable fractional stable process is a
complex-valued process defined by

X(e) = §°_ & dM_(n).

itA
-1 1-H-1/a
iA le a

where O<H<1 and ﬁ; is a complex rotationally invariant a-stable motion, (see

[CM]). This is an H-ss si rotationally invariant a-stable process.

Theorem 1. For the harmonizable fractional stable process, there exists a

version X* such that Accewoq_f9r \ ]
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2
In [KM]. we gave a partial result on the Holder continuity of the
harmonizable fractional stable process, where H is replced by any v < H.
As mentioned above, Takashima [T] showed that the sample paths of the
H-1/a .
| W

linear fractional stable process have the Holder continuity of |[t-s ith

the help of some slowly varying function, if 1<a<2 and 1/a { H < 1. In the
following theorem, we can see that this is also true for general H-ss si

a-stable processes with 1<a<2 and 1/a<H<1.

Theorem 2. Let X = {X(t)}tzo be H-ss si a-stable with 1<a<2 and 1/a<H<1. Then

there exists a version X on [0,1] such that

IX*(£)-X"(s) |

lim sup ~ =
510 |t-s|e[0.1] |t-s |1/ |10g|t-s||}/FF1*e
|t-s|<6

for any e > O.

a-stable processes have v-th moments for any v < a. Then, by the property
of H-ss si, we have
EL[X(t)-X(¢) 71 = B[ [e-s 77 [x(1) "]
= CIt—s|H7.
If 1<a<2 and 1/a<H<1, then we can find 1<{v<a such that Hv>1. This means that
H-ss si a-stable processes with 1<a<2 and 1/a<H<1 satisfy Kolmogorov's moment
condition

(1.1) EL |X(t)-X(s) "] < K|e-s|T"

where v+ > 1, K> 0, Hv > 1. It is well-known that under condition (1.1), there
exists a version whose sample paths are continuous. A natural question is
whether we can get the Holder continuity just under the moment condition (1.1)

without self-similarity and stability. This is the case. as seen in the
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following theorem. This fact may be known but we cannot find appropriate

references. We shall give its proof in this paper.

Theorem 3. Suppose X = {x(t)}te[o.l] satisfies

(1.2) ELIX(t) - X(s)|"] < Kle-s|P

where v 2 1, K> 0, B > 1. Then there exists a version X such that

lim  su [X"(£)-X"(s) |
B (B-1)/~ T+e
510 |t-s|€[0.1] |t-s]| |log|t-s| |
|t-s|<5

It is noted that Theorem 3 is not enough to get Theorem 2. If we apply

Theorem 3 to H-ss si a-stable processes, we can only obtain

t ] *
lim  sup [X"(t) ; X (s)| _ 0
510 |t-s]<s  |t-s]|

for any A < H-1/a.

The proofs of Theorem 1, 2 and 3 are given in the subsequent sections.

2. Proof of Theorem 1

The basic idea to prove Theorem 1 is to use the LePage representation of
complex-valued rotationally invariant stable processes. The LePage
representation allows us to regard stable processes as conditionally Gaussian
processes and we next use the known results for Gaussian processes.

We state results for the LePage representation and Gaussian processes as
lemmas.

Let ¥ be an arbitrary probability measure equivalent to Lebesgue measure
on R and let ¢ be its Radon-Nikodym derivative, y(dA) = ¢(dA)dN. Let {Ei)jzl

be a sequence of iid random variables with distribution ¥, and let {gj}j>1 be
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sequence of iid rotationally invariant complex-valued random variables with

E[glj = 0 and E[IRegla] =1. Let {I be a sequence of Poisson arrival

RS
times with unit rate. Suppose that {Ei}. {gj}. {FJ} are mutually independent.

Lemma 1. Suppose X = (x(t)}t>0 is represented as
00 ~
X(t) = J_, f(t.k)dMa(A).

Then {X(t)} has the same finite-dimensional distributions as {Y(t))t>C

t20
defined by

-1/a

_ e -1/a
(2.1) Y(e) =C 3 gl (e

f tl *
(t.£,)
where the last series converges almost surefly for each t.

This result was shown in [MP]. However, there is a small gap in their
proof, which is filled in [KM].

The next lemma due to [K1] was shown for real-valued processes, but it is
easily seen to be valid also for the complex-valued case. More precisely, the
lemma can be given from Theorem 1, Corollary 1 and the comment at the end of

the proof of Theorem 1 of [K1].
Lemma 2. Let (Y(t)}c€[0 1] be a centered Gaussian process satisfying

EL[Y(£)-Y(s)|%] < o(le-s]).

172 |
i

where o(x) is a non-decreasing function defined on (0.®) and o(x)|log x| s

also non-decreasing near the origin. Then

L sup [Y(e)-Y(s) |

<
510 |t-s|<6 o(|t-s|) |log |t-s]||/2

Proof of Theorem 1. Recall that
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X(t) = J_p £(t.0)da¥_(A).
where
itA
f(t,l) = E_szl |x|l-H-1/a_
Take
a
e(A) = 1

1+m °*
Al l10g N7

where n > 0 and an is the normalization for Je(A)dA = 1, and fix {§i} and {Fj}
in (2.1) to regard Y as a conditionally Gaussian process.

We denote the expectations with respect to {gj} and {fj} by Eg and EE'
respectively. In what follows, C denotes a positive constant which may differ

from one inequality to another. We then have

2. % -2/a -2/a 2
CE [ lg, 121 3 172 %(8 )2/ |1 (e.8 )~ (s.£)

(2.2) E_[|Y(t) - Y(s)|%]
-3 j=1

ca?(|t-s|).

where

o - - 2
2z = 21 sup |£(t.E,)-F(s.E)|

t-s|<z
[ ]
<c 3% e, 1P A 1yl 20
1

Then we can prove

© 2 .-n
(2.3) s 52 ) e as (g0
n=1 b“(2 )
where
H (1+n)/a
b(t) = t log|t|| .

We are going to show (2.3). We have
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2 o
EE[a (z)] <C jzlrj

[
(@]
™M
H
S
—
—

w
iC s vl

}
j=1 4 2

where

J.1/z |1y = (1-2/0) -2(H+1/2)+2,

(x|log x

—
—
i

C22H Ilog zl—(1+n)(l—2/a)

and

CIT/Z(X|1°g x|1+n)—(1—2/a)x—2(H+1/a)dx

4
[\
N

szHllo zl_(1+n)(1_2/a) .

Therefore

-2/a 2H|10g ZI (1+n)(1—2/a)

N

(czr

2
E
A CENCRRY

and thus

[+]
el s a—@—l (C ST 272y 5 57N ¢,
j=1 b3(2" ) j=1 9 n=1

I

which is (2.3). From this,

lim b(z) = =0 a.s. (.,

which implies for small z > O,

H (1+n)/a
a(z) < Cz'|log |z| s. (E.T) .
This combined with (2.2) gives us
2(140)/a
2H
ELIY(0)-Y(s) 1?1 < cle-s|™ |iog |e-s] :

- - - /
2/af8¢(x)1 2/a(|zx|2 A l}lxl 2(H+1 a)dx
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If we regard this right-hand side as az(lt—sl) in Lemma 2, it satisfies the

conditions in Lemma 2. Therefore by Lemma 2, almost surely with respect to

(£.7)

[Y(t)-Y(s)!
lim sup =0
610 |t-s|<6 |t-s|H|10g|t-s||1/a+1/2+e

for any € > 0. The proof is thus completed. O

3. Proof of Theorem 2

We need a real-valued lemma.

Lemma 3. Let {f(t)} be a real-valued continuous function. Then we have

t€[0,1]

o
sup __ |f(t)-f(s)| <3 = max_ [f((x+1)27") - £ (k2 )| .
|t-s <2 r=n 1<k¢2
Proof. Write the binary expansion of t € [0,1] as
[+
t= 3 aj(t)2-J. aJ(t) =0 or 1,
Jj=0

and put

5 -
t. = 2 a,(t)2 Y.
j=0 7

Then for t,s satisfying It-sl < 2™,

le)-£(s)| € = [e(e, )-F(e )] + [ECe)-E(s )|+ 3 |8(s,)-E(s)]
r=n r=n

<3 3 max_ |f((k+1)277) - £f(x27)].
r=n 1<k<2"

This concludes the lemma. o

Proof of Theorem 2. As mentioned in Section 1, H-ss si a-stable processes with
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1 <a<2and é < H <1 satisfy moment condition (1.1). Hence there exists a
version X* with continuous sample paths. We write it X for simplicity of the
notation. We restrict X(t) on {t|t € [0,1]}. Put

A (X) = max_ [X((k+1)27™) - X(k2 ™) ].
n 1<k¢2™

By Lemma 3, we see

©

3.1 X(t)-X <3 2 A_(X).
(3.1) (B KOX@] €3 3 400

Let #(x) be a nonnegative, nondecreasing convex function defined on [0,®)

satisfying ¢(0) = O and

a
¢(x)"‘-—¥——-— as x — @

(log X)1+"

for some n with 0 < 1 < ea. Denote the inverse function of $(x) by ¢-1(x).

¢_1(x) is a nonnegative, nondecreasing concave function on [0,®) and satisfies

¢—1(x) ~ é-xlla(log x)(1+n)/a as x — ©,
Since X is a-stable, we know
(3.2) P{IX(1)] > x} “x* as x — o,
and therefore
(3.3) E[¢([X(1) )] < .

For simplicity, we put B := H - é (>0) below.

We now have

e MR e
Ef 2 “oB_1/avite 1¢3 2 —Fi/mise 22 UE[ -y
n=1 2 n n=1 2 n r=n 2

] (by (3.1))




® A_(X)
1 -r
3 2 19 nﬁ 1/a+1+¢ z 2 HE[¢ °¢( )]
(33 1 s 2 THy" (E[¢(A (X))J)
= nel 2—nﬁn1/a+l+e r=n rH

(by Jensen’'s inequality), where we have

r

A (X) 2 -r
X((k+1)277)-X(k2
Ero (I 7 ero(X(Ue)2 )X(2 ),
k=1 2
21’
= 2 E[¢([X(1)])] (by H-ss si)
k=1
= c2f (by (3.3)).
Hence we have
° | sng 1X(t)-X(s)| © . ®
t-s -T - T
E[ = 2 1{C3 — > 27 (c2)
n=1 nﬁnl/a+1+e n=1 2 anl/a+1+e r=n
> 1 2 -rH,r/2 (141,)/
-rH,r T T,)/a
$C 3 —j7me 22 2 T(log 2) (by (3.2))
n=12 "n r=n
ot 1 n(H-1/a)_(1+1)/
{C 3 — TRl U e,

n=1 2 nﬁnl/a+1+e

implying
w s X(O)X(s)|
5 [t-s]<2™ o
-nf_1/a+l+e a.s.
n=1 2 "n

Therefore, there exists an N such that for any n 2> N,

(3.4) sup _ IX(t)-X(s)| < 2-nB nl/a+1+e a.s.

|t-s |2

For any t,s satisfying |t—s| < 2-N. take n > N such that 277 < Jt-s| < 2—n+1'

Then we have by (3.4)
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B 1/a+1+e

IX(t)-X(s)| < |t-s|”|log|t-s]| a.s

and hence
[X(t)-X(s)|
sup _ <1 a.s

lt-s[<2™ |t-s|P[10g]c-s||1/2*1*e

Since € > 0 can be arbitrarily taken, we conclude Theorem 2. o

4. Proof of Theorem 3

We again start with the preliminary iemmas.
Lemma 4. Let {f(t)}t€£0 1] be a real-valued continuous function and let

A (f) = max_ sup __ |f(k2 "+h) - £(k2)| .
n 0<k<2™ 0¢h¢2™

Let ¢(t) be a continuous function on [0,1] such that ¢(0) = 0 and ¢(t) is

monotone increasing in the neighborhood of the origin. If

© A_(f)

(4.1) —-i‘—_l——(“’,
n=1 ¢(2 n )

then

f(t)-f(x
lim sup 1—1—%—:LT11 = 0.
5lo |e-sj<s  elIt=s])
Proof. For any t,s € [0,1], choose n € N such that
-n-1 -n
2 S lt-s| <277,
and renresent t and s by

-n -n
t:kt2 +ht and s-ks2 +hs.

respectively, where k .k € Z, 0 ( h_, h_ < 2™

Noting lkt-ksl =0 or 1, we
have

(4.2) |£(e)-£(s)| & 1f(e)-F(k 2] + |F(k2™)-f(k 2| + [£(k 2~ (s)]
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s 3An(f).
For 6>0, choose N € N such that
(4.3) N1 ¢ 5 ¢ N
Then we have

f(t)-f(s f(t)-f(s
() mp lEE L, L0

le-s|<s  PUESD 7 g ellt-s])

For t,s satisfying It—sl < 2-N. there exists an n 2 N such that

2—n—1 < |t-s]| < 2™ Thus it follows from (4.2) that for any t,s satisfying

le-s| < 27F,
[£(t)-f(s)] $ 34 (f)
A (f)
3¢(|t-s]) ———
S Solems o2
o A (f)
< 3e(lt-s|) 3 F—m—
n=N ¢(2 )
implying
f(t)-f(s
(4.5) |tf:7<2—N l’&?%?:ﬁT%l < 3Dy(£).
where
() - ; A_(f)
DN - neN ¢(2-n—l)

Note that 610 is equivalent to N— ® by (4.3). We thus conclude from (4.1).
(4.4) and (4.5) that

ft)-f(x
lim  sup — ¢ lim 3D.(f) = O.
5lo |e-s|<s  eUIt=s]) 7 N N

Lemma 5. If (1.2) i{s satisfied. then
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-n(p-1)/~

El swp [X(t)X(Q) "I <5 (5 2 ).

0<t<1 n=1

This is considered to be known, but we cannot find it in the literature.
However, the proof can be found in the lecture note by one of the authors [K2]

at National Taiwan University, which will be published.
Lemma 6. If (1.2) is satisfied, then for 0<a<b{l,

E[ sup  [X(t)X(s)|"] ¢ c(b-a)P.
ast<hb

Proof. If we put Y(t) := X(a+t(b-a)). then for 0¢s, t{l,
EL]Y(£)-Y(s) |71 = E[[X(a+t(b-a)) - X(a+s(b-a))|"]
{ K(b-a)P|e-s|P,
under moment condition (1.2). Thus, by Lemma 5,

E[ sup |X(t)-X(a)|"] = E[ sup |Y(t)-Y(0)|"] = c(b-a)P,
ast<b o<l

concluding the lemma. a]

Proof of Theorem 3. Once again, we take a version X with continuous sample
paths from the beginning.

As in Lemma 4, we put

A(X) = max sup _ IX(k2 ™h) - X(2™)| .
n 0<k¢2™ 0¢hg2™

We have

° (X
E[ 2 -n-1
n=1 ¢(2 )

]

s 1
= 3 ————E[A_(X)]
n=1 ¢(2 n l) n
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[+ 4]
¢ 3 —1 — () DY (since 1)
-n-1 n
n=1 ¢(2 " )
2 1 2" 1/
¢ 3 —=— (3 E[ sup_ |X(k2™™+h)-X(2™)|"])"""
n=1 ¢(2 ) n=1 0<h<2
> 2" v
¢ 3 —— (3 2 ™) by Lemma 6)
n=1 ¢(2 ) n=1
ot 1 -n(B-1).1/
=C 3 —_—n_-l—(znw’ Wi
n=1 ¢(2 )
If we take here
1+e
ox) = Ix|P D 7hog IxI| . e2o0.
then we have
©  A(X)
E[ 3 — <=,
n=1 ¢(2 )
yielding
© A (X)
b ——) (o a.s
n=1 ¢(2 )
The conclusion follows from Lemma 4. a}
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